4芯光缆分线箱在有线电视光纤到户的工作中,通过FTTH网管协议模型架构,设置了RF混合模式以及I-PON的计划方案,在其中的网络管理模式中采取了分散布局的模式结构,这个结构里面包含了SNMP Agent,利用OAM和基于OAM模式扩展的终端设施进行接收,从而有机的实现网络管理系统对有线电视网络协议模式FTTH网络的把控[1]。在RF混合模式以及I-PON的计划方案中,可以利用有线宽带入户的类型对终端设施进行有效的管理,保障统一的网络制式配置。然后有线电视网络FTTH结构协议通过多通道的模式管理,设置以太网接收端口、wifi系统组模以及接收器等基本配置实现有线电视宽带入户的网络管理。光纤通信的特点体现在可靠,在电力行业应用十分广泛,在继电保护、监控调度、自动化方面发挥着重要作用。本文就光纤通信技术在电力系统调度自动化中的应用作简要阐述。
4芯光缆分线箱产品分类
4芯光缆分线箱产品结构
光纤通信是将光作为载波,光纤作为传输媒质,从而实现信息传输。光纤的组成包括了纤芯,包层,涂层。内芯在几微米到几十微米之间,比发丝还细。中间层将其称之为包层,纤芯完成信号的传输,包层与纤芯的折射率不同,将光信号封闭在纤芯中传输并起到保护纤芯的作用,涂层的作用在于保护光纤。光纤的通信原理是,将需要传输的信息在发送端变为电信号,之后将其调制到激光器发射的光束,光的强度会随着信号幅度变化而相应变化,并利用光纤发送。而在接收一端,光信号由检测器接收并且将其变为电信号,通过解调使其恢复到原来信号状态。光纤通信在技术方面的组成包括了信号发射,信号合波,信号放大与传输,信号接收,信号分离。
4芯光缆分线箱功能说明
光纤通信技术的特点体现在以下方面,首先是具有较大的传输容量,传输带宽与调制方式是光纤通信技术具备传输容量的因素。光源具有调制特性,相比于电缆与铜线其通信容量要大许多,并且可以通过其它措施使信息在传递过程中损失程度大限度的降低,从而避免信息容量导致的限制。光纤通信抗干扰能力比较强,光纤材料的主要成分是石英,此种材料具有良好的绝缘效果,因此使光纤具备了较好的抗干扰能力。石英材料自身的性能比较稳定,具有较强的抗腐蚀能力,并且绝缘效果好,能够抵抗雷电干扰与太阳黑子活动。人为电磁的干扰也能够得以削弱。在具体施工环节,光纤架设如果采用平行架设的方式,同时高压电线也采用平行架设的方式,就能够构成复合型光缆,从而为电力调度自动化工作开展提供支撑,电磁脉冲对通信造成影响就可以有效降低。
4芯光缆分线箱产品属性
保密性能较好,电波传输过程中,电磁波泄露情况是无可避免的,而电磁波泄露,就会使信号安全性降低,严重的时候信号可能被窃取。而利用光纤技术可以将信息限制于光线中,即使是出现泄露情况,光纤外包皮也能够将信号吸收,从而避免外界窃取信号。但是在实际施工过程中可能会存在同一条光缆包裹数量不等的光纤,而由于光纤外包皮的作用,彼此之间不会出现信息干扰问题。光缆传输产生的损耗较低,相比于现有的传输介质,光纤产生的损耗是低的,因此在远距离传输时采用光纤更加的合理。随着社会经济的发展,人们对于信息传输要求也在提升,而信息传输距离在不断增大,由此会导致传输损耗增大,降损已经成为了信息传输过程一项非常重要的工作。
4芯光缆分线箱技术指标
随着我国社会经济的发展,光纤技术应用的范围也在逐渐增大,在电力系统中应用光纤技术是社会发展的趋势,通过智能化的方式进行信号传递,而金属电缆则被光纤取代从而成为信息传输的新媒介,并且以此形成了二次通信系统,而二次系统则会成为电力系统发展的趋势。数字化技术发展作为电力调度系统发展的基础,自动化系统需要实现信息传输数字化,对于光纤通信技术而言有一定的挑战性。光纤技术发展需要随着社会变化不断的变化,从而更好的适应社会发展需要,在应用于电力调度自动化系统中使其能够正常发展,对于其中运用的重要技术难点存在的问题需要加大科研力度,从而使系统在应用的过程中持续完善。
4芯光缆分线箱技术要求
电力调度系统在发展过程中向着自动化与智能化的方向发展,从而使工作人员的劳动强度降低,同时工作安全性也得到了提升,调度自动化系统应用能够对现有的配电网络进一步优化,从而使电力网络供电可靠性与供电质量得到提升。作为一种性能稳定的通信传输介质,在电力调度系统中应用光纤,工作人员需要结合到电力企业自身的特点与光纤自身的特点,从而使组成电力调度各个部分能够有效运行,同时也确保电力通信能够更加有效与安全。随着我国电力通信技术的发展,光纤技术应用于电力通信系统也将会发挥更大的作用。
4芯光缆分线箱注意事项
和传统的通信技术相比,光纤通信在容量、损耗、传输速率等方面具有优势,在强大的技术和资金支持下,获得了迅猛发展。本文首先分析了光纤通信技术的特点,然后介绍了在铁路通信系统中的应用,阐述了未来发展趋势,以供参考。光纤通信技术从出现到发展,容量不断扩大、传输速度不断加快,不仅技术革新迅速,而且应用范围迅速扩展,目前在多个领域得到普遍应用。以铁路通信系统为例,向着智能化、宽带化的方向发展,光纤通信技术的应用,可以满足系统对于通信技术的需求,促使通信系统更加完善。以下对此进行深入探讨。与其它的技术相比,光纤通信具有独特的优越性。此种技术以光纤作为传输介质,利用光线进行信息传递。光纤通信技术的组成包括了以下部分,电端机,中继器,光缆,光湍机。此种技术在应用方面组网非常的灵活,可以是星型、网型,也可以是链型等。而电力调度自动化通常是应用环形网络,从而使其连接于计算机局域网络,达到数据共享目的。
光纤通信技术具有频带宽、容量大的特点,相比于微波技术,光纤在信号传输上的容量高出数十倍;相比于电波频率,光纤的光波频率高出十几倍。单纯从光纤的频带宽度来看,光纤传输带的宽度比铜缆、电缆都要大,而且传输过程中的损耗较小,这是一个巨大的优势。综合来看,光纤通信的信息传输容量大、传输距离远,这是其他通信技术难以比拟的。我国目前常用的光纤材质为石英光纤,相比于其他材质的损耗低,可以降低施工运营成本。另外,玻璃材质具有电器性质,而且石英光纤在具体施工中,由于绝缘性能良好,因此不需要设置接地和回路,能加快施工进度、降低施工成本。通信企业要想获得长远发展,就必须通过节约成本提高竞争力,光纤通信技术的应用刚好满足这一要求。
光纤通道与继电保护之间的通信方式主要有专用光纤通信方式和复用光纤通信方式两种,每一种通信方式都有其特点和适用情形,在使用过程中应该根据实际情况来进行方式的选择。具体如下。(1)专用光纤通信方式专用通信方式只传输继电保护信息,而不传输其他信息,这主要是因为专用通信方式是专门为继电保护而进行建立的专用光纤通道。专用通信方式的通信距离一般在100km之内,这主要受到了光及发出和接收距离等各方面因素的影响和制约所致。专用通道方式是光缆的纤芯经过融纤后,由光缆终端箱直接接入到继电保护设备的接口,整个接入过程中没有中间环节和其它设备的介入。因此其主要优点就是传输可靠性高、传输方式简单、便于管理。