架空式576芯三网合一光缆交接箱另一方面,随着技术的进步和大规模产业的形成,光纤价格不断下降,应用范围不断扩大:从初期的本地电话网的局间中继线到长途干线进一步延伸到用户接入网,从数字电话到有线电视(CATv),从单一类型信息的传输到多种业务的传输。目前光纤已成为信息宽带传输的主要媒质,光纤通信系统将成为未来信息基础设施的支柱。在许多发达,生产光纤通信产品的行业已在国民经济中占重要地位。根据资料,仅光缆产品一项(约占整个光纤通信产品的一半),1995年在世界市场销售额达80亿美元2000年达180亿美元,5年中复合年增长率(CAGR)为17.6%。世界成缆光纤市场销售量,1994年为1810×104km,2001年为6570×104km,7年中CAGR为20%,每年数据光发射机的功能是把输入电信号转换为光信号,并用耦合技术把光信号大限度地入光纤线路,光发射机光源、驱动器和调制器组成,源是光发射机的核心。
架空式576芯三网合一光缆交接箱产品图片
架空式576芯三网合一光缆交接箱简介
3.1.5发光二极管在光纤通信中使用的光源,除了半导体激光器(LD)以外,还有半导体发极管(LED)。LED是光纤通信中.种重要的光源,它广泛应用于中、低速短距离光纤通信系统中。发光二极管(LED)是非相干光源,是无阅值器件,它的基本工作原理是自发辐射。发光二极管与半导体激光器在材料、异质结构上没有很大差别。二者的差别是:发光二极管没有光学请条腔,不能形成激光。发光根管的发光仅有于自发辐时,所发出的是卖元是非相干光,由于不是激光振苦,所以没有调值。
架空式576芯三网合一光缆交接箱概述
LED 的结构和LD相似,大多采用双异质结芯片, 把有源层来在方式的不同, LED分DED没有解理面,即没有光学请振腔。按照器件输出光力式计光对LED间,不同的爱的的种,面发光型LED输出的光東方向垂直于有源区:边发元为面发光型和边发先学高种: ." 其抵构如图3.10所示输出的光東方向平行于有源区,面发光型LED是在电极部分开孔,光通过透明窗口自孔中射出,发光面般为35 -75um大小与多模光纤芯径差不多,为了提高与光纤的耦合效率,大多采用透镜。
架空式576芯三网合一光缆交接箱技术参数
边发光型LED发光的方向性比面发光型LED好.与光纤的精合效丰较高, 发光亮度也高,但其发光面积小,所以输出的光功事只比面发光型LED稍高些。为了加大入纤的光能量,LED必须做成高亮度的光源。因此,LED的驱动电流比LD的高。a 3. LED的工作特性(1)光谱特性LED发射的是自发辐射光,没有谐振腔对波长进行选择,谱线宽度比LD要宽得多。讲线宽度对系统性能有很大的影响,谱宽▲i越大,与波长相关的色散就越大, 系统所能传输的信号速率就越低。一般短波长GaAlAs-GaAs LED谱线宽度▲为30~ S50nm,长波长InGaAsP-InP LED谱线宽度▲i为60~ 120m.图3-11所示是InGaAsPLED的输出光谱。发光光谱随着温度升高或驱动电流加大,谱线加宽,且峰值波长向长波长方向移动。
架空式576芯三网合一光缆交接箱操作说明
输出光功率特性由于LED是无阅值器件,加上电流后,即有光输出,且随着注入电流的增加,输出光功率近似呈线性地增加。因此,在进行调制时,其动态范围大,信号失真小,较适用于模拟 通信。两种类型发光二极管的输出光功率特性如图3-12所示。驱动电流I较小时,P-1 曲线的线性较好:当1过大时,由于P-N结发热而产生饱和现象,使P-I曲线的斜率减小。在通 常工作条件下,LED工作电流为50~ 100mA,输出光功率为儿mW,由于光束辐射角大,入纤光功率只有几百pW.
架空式576芯三网合一光缆交接箱结构说明
武中O迎Ro)题本为和频本为0时LED的输出光功率,是有源区中收流子寿会时间。为了提高调制频率,应设法减小就缩小了LED可供使用的范。法解小品但调制顿率提高后,输出光功率可能下降,这样(4)温度特性温度特性主要膨响LED的平均发送光功率、PI特性的线性及工作波长.当温度上升时,LED的平均发送光功率会下降:线性工作区变窄,使得光发送电路噪声增加,系统性能下降:峰值工作波长向长波长方向漂移,附加损耗加大.但由于LED是无闻值器件,其 温度特性比LD的要好得多,一般不需 加温度控制电路。
耦合效率由于LED发射出的光来的发散角较大,一般为40" ~120°,因此与光纤的耦合效率较低。一般只适于短距离传输。根据以上特性分析,LED与LD相比,LED输出光功率较小,谱线宽度较宽,调制频率较低。但由于LED性能稳定,寿命长,使用简单,输出光功率线性范围宽,而且制造工艺简单,价格低廉。因此,这种器件在中、低速短距离数字光纤通信系统和模拟光纤通信系统中得到广泛应用。区tF) .五长长二,中五,及下九西面土由从曲线中可以看出,温度对激光器的影响很大,为了降低温度对LD的影响,可以采用 两种方法:选择温度特性不错的新型LD,或通过一个 外加的自动温度控制电路来稳定激光出光功事。