144芯三网合一光纤交接箱光纤的光学特性主要有折射率分布、多模光纤的数值孔径(NA),模场直径(MFD)和有效面积、截止波长等。光纤的传输特性主要包括光纤的衰减系数、多模光纤的带宽、单模光纤的色散特性等。光纤的机械特性是非常重要的,由于石英光纤具有细和脆的特性,其机械性能比金属导线差。光纤的机械特性主要包括抗张强度、耐侧压力、弯曲以及扭绞性能和使用寿命等,使用者关心的是抗张强度。强度是指光纤受到张力的作用而断裂时的大强度。目前构成光纤的材料是SiO2,大多数光纤通常被拉成125μm的细丝。从理论上推算,光纤的抗张强度可达20GPa。但实际上由于光纤内部的气泡、微粒、杂质等影响,抗张强度只有0.1~0.2GPa。但是光纤加上涂覆层后抗张强度较大增强。
144芯三网合一光纤交接箱细节图片

144芯三网合一光纤交接箱产品介绍
在长波长区则小得多,约0.05dB/km。大红外吸收是石英材料的SiO键因振动吸收能量,造成损耗,产生波长为9.1gm、12.5m和21pm的三个谐振吸峰,其吸收拖尾延伸至1.5~1.7gm,形成石英系光纤工作波长的工作上限。(2)杂质吸收损耗:光纤中的有害杂质很多,主要有过渡金属离子和OH离子两大类。光纤材料中的金属杂质,如V、Cr、Mn、Fe、Ni、Co等,它们的电子结构产生0.51.1pm的边带吸收峰(0.5~1.1m)而造成损耗。现在由于工艺的改进,可以减小金属杂质浓度至小程度,因此它们的影响已经很小。OH离子吸收损耗,在石英光纤中,OH键的基本谐振波长为2.73m,与Si-O键的相互影响,在光纤的传输频带内产生一系列的吸收峰,影响较大的是在1.39m、1.24pm及0.95m波长上,在峰之间的低损耗区构成了光纤通信的三个窗口。
144芯三网合一光纤交接箱内部结构
(3)原子缺陷吸收损耗是光纤材料的某个共价键断裂而产生原子缺陷,而吸收光能引起损耗,其吸收峰波长约0.63m,选择合适的制作工艺,这种因素的影响也可以减至小。2)散射损耗光纤散射是由于光纤中介质的不均匀性而使光向各个方向散开的现象,光纤散射会使部分光功率辐射到光纤外面而造成损耗。光纤散射损耗包括线性散射损耗和非线性散射损耗两大类。(1)线性散射损耗主要有瑞利散射损耗和波导散射损耗:不常的发则瑞利散射损耗。光纤在加热制造过程中,热扰动使原子产生压缩性的不均匀,造成材料密度不均匀,进一步造成折射率不均匀。这种不均匀性在冷却过程中固定了下来并引起光的散射,称为瑞利散射。这正像大气中的尘粒散射了光,使天空变蓝一样。
瑞利散射的大小与光波长的四次方成反比。因此对短波长窗口的影响较大。波导散射损耗。当光纤的纤芯直径沿轴向不均匀时,产生导模和辐射模间的耦合,能量从导模转移到辐射模,从而形成附加的波导散射损耗。但目前的光纤制造水平,这项损耗已降到0.01~0.05dB/km范围之内。非线性散射损耗,当光纤中传输的光强大到一定程度时,就会产生非线性受激喇曼散射和受激布里渊散射,使输入光能部分转移到新的频率分量上。在常规光纤通信系统中,半导体激光器发射的光功率较弱,因此这项损耗很小。但是采用掺铒光纤放大器(EDFA)时,非线性散射损耗就不能忽略了3)弯曲损耗当理想的圆柱形光纤受到某种外力作用时,会产生一定曲率半径的弯曲,导致能量泄漏到包层,这种由能量泄漏导致的损耗称为辐射损耗。
光纤受力弯曲有两类:宏弯和微弯。(1)宏弯是曲率半径比光纤直径大得多的弯曲,例如,当光缆拐弯时就会发生这样的弯曲。一般情况下弯曲半径大于5mm时,宏弯损耗可以忽略;但是弯曲半径在5mm以下减小时,宏弯损耗会较大地增加,所以应该避免这种情况(2)微弯是光纤成缆时由于涂覆材料而产生的随机性扭曲,微弯引起的附加损耗一般很小,基本上观测不到。但是当温度低到50~60℃时,微弯损耗加大根据如上分析如果进一步减小光纤的损耗有如下方案:长•全波光纤,也称无水光纤,进一步减小OH的浓度,这样OH吸收损耗就会减小,39gm的吸收峰较大地降低,从11001600m都会损耗较小,为波分复用提供广阔的间。当,,°新材料光纤,有一种新的氟化锆(ZrF4)光纤,在A=2.5m附近具有较低的本征材料吸收损耗约0.01dB/km,比石英光纤低一个数量级,具有诱人的应用潜力。
另一种硫化物多晶光纤在A=101m附近的红外区亦具有很低的损耗,理论上预示这类光纤的低损耗将小于103dB/km。3.6光纤的色散特性1.光纤色散的概念和种类内光信号在光纤中传输时不仅由于光纤损耗而使光功率变小,波形也会变得越来越失真光信号通过光纤传播期间,波形在时间上发生展宽的现象称为光纤色散。光纤色散使输入的光信号在光纤传输过程中展宽到一定程度,就会产生码间干扰,增加长误码率,从而限制了通信容量引起光纤色散的原因很多,主要有:,并(1)模式色散—也称为模间色散,在多模光纤中光信号是由很多模式携带的,不同的(2)材料色散由于材料折射率随光波长非线性变化引起的色放模式传输的相位常数不同,而引起的色散。

通常情况下,光纤的特性受温度影响不大,但是在温度很低时,损耗随温度降低而增加,尤其是在温度非常低时,损耗急剧增加,所以高寒地区工作的光缆应注意到这个产生这种现象的原因是光纤的热胀冷缩。构成光纤的石英材料(SO2)的热膨胀系数很小,在温度降低时几乎不收缩。而光纤在成缆过程中必须经涂覆和加上一些其他构件,涂覆材料及其他构件的膨胀系数较大,当温度降低时,收缩比较严重,所以当温度变化时,材料的膨胀系数不同,将使光纤产生微弯,尤其表现在低温区。目前ITUT建议定义了5种单模光纤G.G.G.GG.652和G.655是目前光纤通信工程中广泛使用的单模光纤(1)G.652光纤56,其中G.652光纤的特点是:其设计的佳工作波长在1310m附近,也可以用于1550gm波段。







