100回线保安接线排线性散射如果散射光的频率等于入射光的频率,散射时没有新频率的光产生,这类散射称为线性散射。瑞利散射和米氏散射都属于线性散射。散射粒子大小在0.1~0.2以下的光的散射,称为瑞利散射或分子散射;如果散射粒子大小和光波长入同量级或者更大,称为米氏散射。通过大量实验研究得出,瑞利散射特点之一是散射光强Ⅰ与入射光波长A的四次方成反比,即Ioc/A(2-4-7)这就是著名的瑞利散射定律。利用瑞利散射定律可以解释许多日常的自然现象,如天空为什么是蓝的?旭日和夕阳为什么是红的?因为按照瑞利散射定律,白光中的短波成分(蓝紫光)遭到的散射比长波成分(红黄色)强烈得多,因此天是蓝的。旭日和夕阳呈红色,是由于白光中的短波成分被更多地散射掉了,透过大气散射光的光中剩余较多的自然是长波成分了
100回线保安接线排细节图片

100回线保安接线排产品介绍
19世纪末和20世纪初,科学实验深入到微观领域,在一系列新的实验事实面前,光的电磁理论遇到了巨大困难,如它无法解释黑体辐射、光电效应、康步的探索。10年朗克为了得到与实验相符合的公式,提出了著名的普圆克假设:黑体物质是由带电的线性谐振子所组成,物质中振子的能量是不能连续变化的,只能取一些分立值,这些分立值又是某一最小能量单元c。的整数倍y为光频率。普朗克根据能量子假说,推出了与实验惊人符合的公式,从而使黑体辐射问题得到了圆满地解决。这一假设具有深刻和普遍的意义,正是由于它第一次冲击了经典物理学的传统观念,从此开始了物理学的新纪元外面的电路相连。阳极是由某种金属构成。实验发现,当束紫光照到阳极表面时,将从阳极跑出电子。由于这些电子是由光引发的,因此又叫“光电子”。尽管电子本身带负电,它却能向阴极跑去,从而连通了电路。

100回线保安接线排结构
这种由于光的照射,使电子从金属中逸出的现象称为光电效应根据实验可总结出光电效应具有如下实验规律:(1)每种金属都有一个确定的截止频率,当入射光的频率低于0时,不论入射光多么强,照射时间多么长,都不能从金属中释放出电子。(2)对于频率高于v的入射光,从金属中释放出的电子的最大动能与入射光的强度无关,却与光的频率有关。频率越高,释放出的电子动能就越大(3)对于频率高于的入射光,即使入射光非常微弱,开始照射后也能立即释放出电子,滞后时间不超过10-8s以上这些实验现象都是经典电磁理论无法解释的。爱因斯坦发展了普朗克的能量子概念,于1905年提出了光量子假说。他认为光的能量不是连续分布的,光是由一粒粒运动着的光子组成的。每个光子具有确定的能量,它只能作为一个整体被吸收或产生。

100回线保安接线排特点
光的相干性根据电磁场理论自由空间传播的电磁波是横波,可以由两个互相垂直的振动矢量即电场强度E和磁场强度H来表示。在光波中,产生感光作用与生理作用的主要是电场强度E,所以E矢量称为光矢量。干涉现象是波动过程的基本特征之一。由频率相同、振动方向相同、位相相同或位相差保持恒定的两个相干波源所发出的波是相干波,在两束相干波相遇的区域里,有些点振动始终加强,有些点的振动始终减弱或完全抵消,即产生干涉现象。对机械波或无线电波来说,相干条件比较容易满足,因此观察这些波的干涉现象就比较方便,但对光波则不然。这是因为一般光源发光是由光源中大量原子或分子从较高的能量状态跃迁到较低的能量状态过程中对外辐射光波,这种辐射有两个特点:一是各原子或分子辐射是间歇的、无规则的,每次辐射持续的时间只有108s左右,也就是说,原子或分子每次所发出的光是一个短短的波列。

100回线保安接线排作用
大量原子或分子发光是各自独立进行的,彼此之间没有什么联系,在同一时刻各原子或分子所发光的频率、振动方向、相位都各不相同,千差万别,是随机分布的。所以一般的两个独立光源发出的光不满足相干条件,不能发生干涉,即使是同一光源上两个不同部分发出的光,也同样不会发生干涉。相干光一般可以采用如下方法获得,将一光源上同一点发出的光波分成两束,使它们经过不同的传播,然后在某一空间区域相遇,发生迭加。在此过程中,将每一个波列光都分成两个频率相同、振动方向相同、相位差恒定的波列,这两个波列是相干光,在相遇区域中能生干涉现象。根据这一原则,通常用下列两种方法来获得相干光(1)分波阵面法。杨氏双缝、洛埃镜等光的干涉实验都用分波阵面法来获得相干光的。(2)分振幅法。分振幅法是利用光的反射和折射可以将一束光分成两束相干光。

100回线保安接线排应用
光的衍射1)光的衍射现象光波能绕过障碍物继续传播的现象叫作光的衍射声波可以绕过墙壁,使人不见其影却能听其音,这是因为声波的波长可达几十米,障碍物的线度和波长可以相比拟。而可见光的波长只有几百万分之一米的数量级,比障碍物的线度小得多,所以一般情况下,光的衍射现象不明显。但当障碍物的线度和光的波长可以相比拟时,就可以观察到光的衍射现象,如图2-3-4所示。一束平行光通过一个宽度可以调节的狭缝K后,在屏幕E上将呈现光斑。若狭缝的宽度比波长大得多时,屏幕E上的光斑和狭缝完全致,这时光可看成是沿直线传播的。若缩小缝宽,使它可与光波波长相比较时,在屏幕E上出现的光斑亮度虽然降低,但光斑范围反而增大,而且形成明暗相间的条纹,这就是光的衍射现象,人们称偏离原来方向传播的光为衍射光。

2)单缝夫琅禾费衍射当光源、接收屏都距衍射物无限远时,这种入射光和衍射光都是平行光的衍射称为夫禾费衍射。单缝夫琅禾费衍射实验装置如图2-3-5所示,实验室通常宽度比长度小得多的4.光的偏缝称为单缝,在有限的距离内实现单缝夫琅禾费衍射是通过在单缝前后加上透镜实现。1)光的偏单缝衍射条纹特征参见图23-6,具有如下两个特点(1)单缝衍射条纹是一系列平行于狭缝的明暗相间的直条纹,它们对称地分布在中光的电磁如果光矢(2)明纹亮度不均匀,中央明纹最亮,其他各级明纹的亮度将随着级数的增商而逐所示,示光振明纹两侧在单缝衍射中,若缝较宽,明纹虽然较亮,但相邻明纹的间隔很小而不易分辨;若缝很种光称为窄,间隔虽可加大,条纹分得很开,但明纹的亮度却显著减小。

米氏散射的主要特点是:散射光强随波长的关系已不是与入射光波长A的四次方成反比了,而是与入的较低级次成反比,因此散射光强与波长的关系就没有瑞利散射显著了;散射光强度的角分布也随r/而变,和瑞利散射相比,其前向散射加强,后向散射减弱。2)非线性散射如果散射光中除了入射光的频率或谱线之外,还有新频率的光或新谱线产生,这类散射称为非线性散射。喇曼散射和布里渊散射都属于非线性散射散射光中除与入射光的原有频率a。相同的瑞利散射线外,谱线两侧还有频率为o±士an,…等的散射线存在,这种现象称为喇曼散射它的主要特点如下:(1)在每条原始入射谱线(频率为00)两旁都伴有频率差o(=1,2,…)相等的散射谱线,在长波一侧的(频率为a-01)称为红伴线或斯托克斯线;在短波一侧的(频率为+a)称为紫伴线或反斯托克斯线。专(2)频率差(=1,2…)与人射光的频率∞无关,它们与散射物质的红外吸收频率对应,表征了散射物质的分子振动频率。







